Header Ads

Última hora

Bajo las nubes: una nueva visión de la superficie de Venus

Gracias a las observaciones del satélite Venus Express de la ESA, los científicos han demostrado por primera vez cómo los patrones meteorológicos vistos en las gruesas capas de nubes de Venus están directamente relacionados con la topografía de la superficie que cubren. En lugar de impedirnos la observación, las nubes de Venus podrían ofrecernos información de lo que hay debajo.

Las altas temperaturas de Venus, debidas al extremo efecto invernadero que calienta su superficie hasta alcanzar los 450 grados Celsius, son bien conocidas. El clima en la superficie del planeta resulta opresivo: además del calor, recibe poca luz debido a la gruesa capa de nubes que rodea completamente el planeta. Los vientos superficiales son muy lentos, soplando a un metro por segundo, apenas la velocidad de un tranquilo paseo.

Sin embargo, lo que vemos al observar nuestro planeta gemelo desde las alturas es un enorme manto nuboso, liso y brillante, formado por una gruesa capa de 20 km de espesor. Al situarse entre 50 y 70 km por encima de la superficie del planeta, presenta unas temperaturas menores y similares a las temperaturas en la cima de las nubes terrestres, de unos -70 grados Celsius. La capa superior también sufre una meteorología más extrema, con vientos cientos de veces más rápidos que en la superficie del planeta (e incluso más rápidos que su velocidad de rotación, en un fenómeno denominado ‘superrotación’).

Aunque estas nubes suelen impedirnos ver la superficie venusiana, ya que solo podemos atravesarlas mediante radares o luz infrarroja, es probable que sean la clave para desvelar algunos de los secretos del planeta. Los científicos sospechan que los patrones meteorológicos producidos en la cima de las nubes son consecuencia de la topografía del terreno que se halla debajo. Aunque ya habían obtenido indicios de ello en el pasado, no habían sido capaces de desvelar completamente su funcionamiento...

Gracias a las observaciones del satélite Venus Express de la ESA, los científicos han podido mejorar enormemente la precisión del mapa de Venus explorando tres aspectos del clima nuboso del planeta: la velocidad de circulación de los vientos, cuánta agua alojan las nubes y qué brillo presentan estas nubes en el espectro (y específicamente en luz ultravioleta).

“Los resultados muestran que estos aspectos —vientos, contenido acuático y composición de las nubes— se relacionan de algún modo con las propiedades de la propia superficie de Venus”, admite Jean-Loup Bertaux del laboratorio francés LATMOS (Laboratorio de atmósferas, medios y observaciones espaciales) y autor principal del nuevo estudio de Venus Express. “Hemos utilizado observaciones de la sonda recopiladas a lo largo de seis años, de 2006 a 2012, lo que nos ha permitido estudiar los patrones meteorológicos del planeta a largo plazo”.

Aunque Venus es un planeta muy seco en comparación con la Tierra, su atmósfera contiene ciertas cantidades de vapor de agua, especialmente por debajo de su capa de nubes. Bertaux y sus colegas estudiaron la cima de las nubes de Venus en la banda infrarroja del espectro, lo que les ha permitido captar la absorción de luz solar por el vapor de agua y detectar su nivel de presencia en cada punto de la cima de las nubes (70 km de altitud).

Detectaron un área concreta de nubes, cerca del ecuador venusiano, que albergaba más vapor de agua que sus alrededores. Esta región ‘húmeda’ se encontraba justo encima de una cadena de montañas de 4.500 metros de altitud denominada Aphrodite Terra. Este fenómeno parece deberse a que el aire rico en agua de la atmósfera más baja se ve empujado hasta ascender por encima de las montañas de Aphrodite Terra, lo que ha llevado a los científicos a bautizarlo como la ‘Fuente de Afrodita’.

Como explica Wojciech Markiewicz, del Instituto Max-Planck para la investigación del sistema solar en Göttingen, Alemania, y coautor del estudio: “Esta ‘fuente’ estaba confinada dentro de un remolino de nubes descendentes que atravesaban Venus de este a oeste. Nuestra primera pregunta fue: ¿por qué? ¿A qué se debía toda esa agua localizada en ese punto concreto?”

Al mismo tiempo, los científicos utilizaron Venus Express para observar las nubes con luz ultravioleta y registrar su velocidad. Así, descubrieron que las nubes que descendían de la ‘fuente’ reflejaban menos luz ultravioleta que las demás, y que los vientos por encima de la región montañosa de Aphrodite Terra eran un 18% más lentos que en las regiones colindantes.

Estos tres factores pueden explicarse por un único mecanismo provocado por la densa atmósfera de Venus, proponen Bertaux y sus colegas.

“Cuando los vientos atraviesan las pendientes montañosas de la superficie, generan las llamadas ondas de gravedad”, añade Bertaux. “A pesar de su nombre, no tienen nada que ver con las ondas gravitacionales, que son ondulaciones en el tejido espacio-temporal; las ondas de gravedad son un fenómeno atmosférico que puede verse a menudo en las áreas montañosas de la superficie terrestre. Por así decirlo, se forman cuando el aire se arremolina sobre una superficie irregular. Las ondas se propagan verticalmente hacia arriba, aumentando de tamaño hasta que rompen justo debajo de la cima de las nubes, como sucede con las olas en la costa”.

A medida que esas ondas rompen, empujan los veloces vientos que soplan a gran altitud, reduciendo su velocidad. Eso explicaría por qué los vientos por encima de la altiplanicie de Aphrodite Terra son más lentos que en otras regiones.

No obstante, estos vientos recuperan sus velocidades cuando descienden desde esta cordillera venusiana, con un movimiento que actúa como una bomba de aire. La circulación del viento provoca un movimiento ascendente en la atmósfera del planeta que empuja hacia arriba aire rico en agua y material oscuro en luz ultravioleta desde las capas inferiores de las nubes, llevándolo hasta su cima y creando tanto la ‘fuente’ observada como una amplia columna de vapor descendente.

“Sabemos desde hace años que la atmósfera de Venus alberga un misterioso fenómeno que absorbe la luz ultravioleta, pero aún no sabemos de qué puede tratarse”, confiesa Bertaux. “Este descubrimiento nos ayuda a comprenderlo un poco mejor y a entender su comportamiento: por ejemplo, ahora sabemos que se produce por debajo de la cima de las nubes y que el material oscuro en luz ultravioleta se ve empujado por la circulación del aire, atravesando en su ascenso la cima de las nubes de Venus”.

Los científicos ya sospechaban que se producían movimientos ascendentes en la atmósfera de Venus a lo largo de su ecuador, provocados por los mayores niveles de radiación solar. El descubrimiento que nos ocupa ahora revela que la cantidad de agua y material oscuro localizados en las nubes de Venus también aumenta en puntos concretos alrededor del ecuador del planeta. “Esto se debe a las montañas en la superficie de Venus, que provocan la formación de ondas ascendentes y la circulación de vientos que arrastran materiales desde niveles inferiores”, explica Markiewicz.

Además de ayudarnos a conocer mejor a Venus, descubrir que la topografía superficial puede afectar significativamente la circulación atmosférica tiene consecuencias para nuestra comprensión de la superrotación planetaria y del clima en general.

“Es evidente que este descubrimiento desafía nuestros actuales modelos de circulación generales”, admite Håkan Svedhem, científico de la ESA para Venus Express. “Mientras que nuestros modelos reconocen una relación entre la topografía y el clima, normalmente no producen patrones meteorológicos persistentes relacionados con figuras topográficas superficiales. Esta es la primera vez que vemos este vínculo claramente en Venus, y eso es un resultado de gran importancia”.

Venus Express estuvo operativa en Venus entre 2006 y 2014, cuando concluyó su misión y la nave comenzó su descenso a través de la atmósfera del planeta.

En el estudio realizado por Bertaux y sus colegas se han empleado varios años de observaciones captadas por la cámara VMC (Cámara de Monitorización de Venus), que explora las velocidades de los vientos y el brillo ultravioleta de las nubes, y por el espectrómetro SPICAV (Espectroscopio para la investigación de las características de la atmósfera de Venus), que estudia la cantidad de vapor de agua que contienen las nubes.

“Esta investigación no habría sido posible sin la monitorización continua y fiable del planeta por parte de Venus Express en varias bandas del espectro. Los datos utilizados en este estudio han sido recopilados a lo largo de muchos años”, añade Svedhem. “Un aspecto fundamental es que saber más sobre los patrones de circulación de Venus nos puede ayudar a identificar cada vez mejor el misterioso fenómeno que absorbe la luz ultravioleta en el planeta, lo que a su vez nos permitirá comprender aún más la atmósfera y el clima del planeta en general”.

La sonda Venus Express de la ESA fue lanzada en 2005, llegó a Venus en 2006 y pasó ocho años explorando el planeta desde su órbita. La misión finalizó en diciembre de 2014, una vez que la nave agotó el carburante que le permitía permanecer en posición y cayó a la atmósfera. Algunos aspectos científicos destacados de Venus Express pueden consultarse aquí.

-ESA

No hay comentarios